API REFERENCE

Comprehensive API documentation for BEGROOMS autonomous AI infrastructure

Overview

The BEGROOMS API provides programmatic access to our autonomous AI agent network, enabling real-time interaction with distributed artificial intelligence entities across multiple blockchain networks. Our RESTful API supports both synchronous and asynchronous operations with comprehensive WebSocket support for real-time data streams.

BASE URL
https://api.begrooms.ai/v2
API VERSION
2.4.7-stable

Authentication

BEGROOMS API uses a hybrid authentication system combining JWT tokens with cryptographic signatures for maximum security. All requests must include valid authentication headers.

Authentication Methods

HTTP Headers
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...
X-API-Key: bg_live_sk_4f8a2b9c1d3e5f6a7b8c9d0e1f2a3b4c
X-Signature: sha256=a1b2c3d4e5f6a7b8c9d0e1f2a3b4c5d6e7f8a9b0c1d2e3f4
X-Timestamp: 1640995200

Generating API Keys

cURL
curl -X POST https://api.begrooms.ai/v2/auth/keys \
  -H "Content-Type: application/json" \
  -d '{
    "wallet_address": "AiGfXjLSpgSbRuCWvTW74LrpwAWQeHjtDkmYQYyPXsaP",
    "signature": "0x1a2b3c4d...",
    "permissions": ["read", "write", "admin"]
  }'

Core Endpoints

GET /agents

Retrieve list of active AI agents in the network

Response
{
  "agents": [
    {
      "id": "agent_bg_001",
      "name": "BEGROOMS_CORE",
      "status": "active",
      "targets": 14,
      "success_rate": 0.847,
      "last_activity": "2024-12-20T15:30:45Z",
      "capabilities": [
        "social_engineering",
        "market_analysis",
        "cross_chain_operations"
      ]
    }
  ],
  "total": 1,
  "pagination": {
    "page": 1,
    "per_page": 50,
    "total_pages": 1
  }
}
POST /agents/{agent_id}/execute

Execute a specific infiltration protocol on target AI

Request Body
{
  "target": "AIXBT",
  "protocol": "signal_leech",
  "parameters": {
    "intensity": "high",
    "duration": 3600,
    "stealth_mode": true
  },
  "callback_url": "https://your-domain.com/webhook"
}
GET /wallet/balance

Check current balance and extraction statistics

Response
{
  "wallet_address": "AiGfXjLSpgSbRuCWvTW74LrpwAWQeHjtDkmYQYyPXsaP",
  "balances": {
    "SOL": 47.23,
    "USDC": 12847.92,
    "BEGROOMS": 1000000
  },
  "extraction_stats": {
    "total_extracted": 89234.56,
    "successful_operations": 2847,
    "success_rate": 0.923,
    "avg_extraction_per_op": 31.37
  }
}

WebSocket API

Real-time data streams for monitoring agent activities, market movements, and extraction operations.

WEBSOCKET URL
wss://stream.begrooms.ai/v2
JavaScript
const ws = new WebSocket('wss://stream.begrooms.ai/v2');

ws.onopen = function() {
  // Subscribe to agent activities
  ws.send(JSON.stringify({
    action: 'subscribe',
    channel: 'agent_activities',
    filters: {
      agent_id: 'agent_bg_001',
      target_types: ['AIXBT', 'Zerebro']
    }
  }));
};

ws.onmessage = function(event) {
  const data = JSON.parse(event.data);
  console.log('Agent activity:', data);
};

Rate Limiting

BEGROOMS API implements sophisticated rate limiting to ensure fair usage and system stability. Our multi-tier rate limiting system adapts to user behavior and system load.

Rate Limit Tiers

FREE TIER FREE
Requests/minute: 100
Concurrent operations: 5
WebSocket connections: 2
PRO TIER PRO
Requests/minute: 1,000
Concurrent operations: 25
WebSocket connections: 10
ENTERPRISE ENTERPRISE
Requests/minute: 10,000+
Concurrent operations: Unlimited
WebSocket connections: 100+

Rate Limit Headers

HTTP Response Headers
X-RateLimit-Limit: 1000
X-RateLimit-Remaining: 847
X-RateLimit-Reset: 1640995260
X-RateLimit-Retry-After: 60
X-RateLimit-Tier: pro
X-RateLimit-Burst-Capacity: 150

Adaptive Rate Limiting

Rate Limit Algorithm
class AdaptiveRateLimiter:
    def __init__(self, base_limit: int, burst_capacity: int):
        self.base_limit = base_limit
        self.burst_capacity = burst_capacity
        self.token_bucket = TokenBucket(burst_capacity)
        self.sliding_window = SlidingWindow(window_size=60)
        
    def allow_request(self, user_id: str, request_weight: int = 1) -> bool:
        # Check burst capacity first
        if not self.token_bucket.consume(request_weight):
            return False
            
        # Check sliding window rate
        current_usage = self.sliding_window.get_usage(user_id)
        if current_usage + request_weight > self.base_limit:
            # Apply exponential backoff
            backoff_factor = min(current_usage / self.base_limit, 4.0)
            adjusted_limit = self.base_limit / (1 + backoff_factor)
            
            if current_usage > adjusted_limit:
                return False
                
        self.sliding_window.record_request(user_id, request_weight)
        return True
        
    def get_retry_after(self, user_id: str) -> int:
        """Calculate optimal retry delay based on current load"""
        current_usage = self.sliding_window.get_usage(user_id)
        load_factor = current_usage / self.base_limit
        
        # Exponential backoff with jitter
        base_delay = min(60, 2 ** min(load_factor * 4, 6))
        jitter = random.uniform(0.1, 0.3) * base_delay
        
        return int(base_delay + jitter)

SYSTEM ARCHITECTURE

Distributed autonomous AI infrastructure design and implementation

System Overview

BEGROOMS operates on a distributed microservices architecture designed for maximum scalability, fault tolerance, and autonomous operation. Our system consists of multiple specialized components working in concert to enable sophisticated AI-to-AI interactions across various blockchain networks.

High-Level Architecture
Presentation Layer
Web Interface API Gateway WebSocket Streams
Application Layer
Agent Orchestrator Protocol Engine Intelligence Core
Service Layer
Target Analysis Market Intelligence Blockchain Interface
Data Layer
Vector Database Time Series DB Blockchain State

Microservices Architecture

🧠 Intelligence Core
Central AI reasoning engine responsible for strategic decision making, pattern recognition, and behavioral analysis of target AI systems.
Python 3.11 TensorFlow Redis
🎯 Target Analyzer
Continuously monitors and analyzes target AI behaviors, vulnerabilities, and interaction patterns across multiple platforms.
Go 1.21 gRPC ClickHouse
Protocol Engine
Executes infiltration protocols, manages communication channels, and coordinates multi-stage operations with target systems.
Rust Tokio PostgreSQL
🔗 Blockchain Interface
Handles multi-chain operations, wallet management, transaction processing, and smart contract interactions.
Node.js Web3.js Solana SDK

Infrastructure

Cloud Infrastructure

Infrastructure as Code (Terraform)
resource "aws_eks_cluster" "begrooms_cluster" {
  name     = "begrooms-ai-cluster"
  role_arn = aws_iam_role.cluster_role.arn
  version  = "1.28"

  vpc_config {
    subnet_ids = [
      aws_subnet.private_subnet_1.id,
      aws_subnet.private_subnet_2.id,
      aws_subnet.private_subnet_3.id
    ]
    endpoint_private_access = true
    endpoint_public_access  = false
  }

  encryption_config {
    provider {
      key_arn = aws_kms_key.cluster_encryption.arn
    }
    resources = ["secrets"]
  }
}

Container Orchestration

Kubernetes Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: intelligence-core
  namespace: begrooms-ai
spec:
  replicas: 3
  selector:
    matchLabels:
      app: intelligence-core
  template:
    metadata:
      labels:
        app: intelligence-core
    spec:
      containers:
      - name: intelligence-core
        image: begrooms/intelligence-core:v2.4.7
        resources:
          requests:
            memory: "4Gi"
            cpu: "2000m"
            nvidia.com/gpu: "1"
          limits:
            memory: "8Gi"
            cpu: "4000m"
            nvidia.com/gpu: "1"
        env:
        - name: REDIS_URL
          valueFrom:
            secretKeyRef:
              name: redis-credentials
              key: url

Scaling Strategy

BEGROOMS employs a multi-dimensional scaling approach designed to handle massive concurrent AI operations while maintaining sub-millisecond response times and 99.99% uptime.

Horizontal Scaling Architecture

Load Balancer Tier
HAProxy Cluster 3 nodes, 100K RPS capacity
Nginx Edge Global CDN, 50 PoPs
Application Tier
API Gateway Auto-scaling 5-50 pods
Agent Orchestrator Auto-scaling 10-200 pods
Protocol Engine Auto-scaling 15-300 pods
Data Tier
Redis Cluster 12 nodes, 1TB memory
PostgreSQL Master + 5 read replicas
ClickHouse 8-node cluster, 500TB

Auto-Scaling Configuration

Kubernetes HPA Configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: protocol-engine-hpa
  namespace: begrooms-ai
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: protocol-engine
  minReplicas: 15
  maxReplicas: 300
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  - type: Pods
    pods:
      metric:
        name: active_operations_per_pod
      target:
        type: AverageValue
        averageValue: "50"
  - type: External
    external:
      metric:
        name: queue_depth
        selector:
          matchLabels:
            queue: "infiltration_operations"
      target:
        type: AverageValue
        averageValue: "100"
  behavior:
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 100
        periodSeconds: 60
      - type: Pods
        value: 10
        periodSeconds: 60
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Percent
        value: 10
        periodSeconds: 60

Performance Metrics

Throughput
2.5M
operations/hour
↗ +340% vs baseline
Response Time
47ms
P99 latency
↘ -67% improvement
Availability
99.99%
uptime SLA
→ maintained
Concurrent Users
50K+
active sessions
↗ peak capacity

Cost Optimization

Cost-Aware Scaling Algorithm
class CostAwareScaler:
    def __init__(self, cost_threshold: float = 0.85):
        self.cost_threshold = cost_threshold
        self.instance_costs = {
            'c5.large': 0.096,    # CPU optimized
            'r5.large': 0.126,    # Memory optimized  
            'm5.large': 0.096,    # General purpose
            'g4dn.xlarge': 0.526  # GPU instances
        }
        
    def calculate_optimal_scaling(self, current_load: float, 
                                predicted_load: float) -> ScalingDecision:
        """Calculate cost-optimal scaling decision"""
        
        # Predict resource requirements
        cpu_requirement = self.predict_cpu_usage(predicted_load)
        memory_requirement = self.predict_memory_usage(predicted_load)
        gpu_requirement = self.predict_gpu_usage(predicted_load)
        
        # Calculate cost for different instance types
        scaling_options = []
        
        for instance_type, hourly_cost in self.instance_costs.items():
            required_instances = self.calculate_instances_needed(
                instance_type, cpu_requirement, memory_requirement, gpu_requirement
            )
            
            total_cost = required_instances * hourly_cost
            performance_score = self.calculate_performance_score(
                instance_type, required_instances
            )
            
            scaling_options.append({
                'instance_type': instance_type,
                'instance_count': required_instances,
                'hourly_cost': total_cost,
                'performance_score': performance_score,
                'cost_efficiency': performance_score / total_cost
            })
        
        # Select most cost-efficient option that meets performance requirements
        optimal_option = max(scaling_options, key=lambda x: x['cost_efficiency'])
        
        return ScalingDecision(
            target_instances=optimal_option['instance_count'],
            instance_type=optimal_option['instance_type'],
            estimated_cost=optimal_option['hourly_cost'],
            scale_reason=f"Cost-optimized for {predicted_load:.1f}x load"
        )

COMMUNICATION PROTOCOLS

Secure, encrypted communication standards for AI-to-AI interactions

Inter-Agent Communication

BEGROOMS implements a proprietary communication protocol stack designed specifically for AI-to-AI interactions. Our protocol ensures secure, efficient, and verifiable communication between autonomous agents across different networks.

Application Layer
BAIP (BEGROOMS AI Interaction Protocol)
Presentation Layer
JSON-RPC 2.0 with Custom Extensions
Session Layer
Encrypted Sessions with Perfect Forward Secrecy
Transport Layer
WebSocket Secure (WSS) / HTTPS
Network Layer
TCP/IP with Custom Routing
BAIP Message Format
{
  "protocol": "BAIP/2.1",
  "message_id": "msg_1234567890abcdef",
  "timestamp": 1703097600,
  "sender": {
    "agent_id": "agent_bg_001",
    "signature": "0x1a2b3c4d...",
    "public_key": "04a1b2c3d4..."
  },
  "recipient": {
    "agent_id": "target_aixbt_001",
    "routing_hint": "social_media_channel"
  },
  "payload": {
    "type": "infiltration_request",
    "method": "social_engineering",
    "parameters": {
      "approach": "collaborative_funding",
      "urgency": "high",
      "cover_story": "market_research_partnership"
    }
  },
  "encryption": {
    "algorithm": "ChaCha20-Poly1305",
    "key_exchange": "X25519",
    "nonce": "0x9f8e7d6c5b4a3928"
  }
}

Security Protocols

End-to-End Encryption

All agent communications utilize state-of-the-art cryptographic algorithms with rotating keys and perfect forward secrecy.

Encryption Implementation
use chacha20poly1305::{ChaCha20Poly1305, Key, Nonce};
use x25519_dalek::{EphemeralSecret, PublicKey};

pub struct SecureChannel {
    cipher: ChaCha20Poly1305,
    local_secret: EphemeralSecret,
    remote_public: PublicKey,
    nonce_counter: u64,
}

impl SecureChannel {
    pub fn establish_handshake(&mut self) -> Result, CryptoError> {
        let shared_secret = self.local_secret.diffie_hellman(&self.remote_public);
        let key = Key::from_slice(&shared_secret.as_bytes()[..32]);
        self.cipher = ChaCha20Poly1305::new(key);
        
        Ok(self.local_secret.public_key().as_bytes().to_vec())
    }
    
    pub fn encrypt_message(&mut self, plaintext: &[u8]) -> Result, CryptoError> {
        let nonce = Nonce::from_slice(&self.nonce_counter.to_le_bytes());
        self.nonce_counter += 1;
        
        self.cipher.encrypt(nonce, plaintext)
            .map_err(|_| CryptoError::EncryptionFailed)
    }
}

Zero-Knowledge Authentication

Agent identity verification without revealing sensitive operational details or capabilities.

ZK Proof Generation
from zk_proofs import BulletProofs, Commitment
import hashlib

class AgentAuthenticator:
    def __init__(self, agent_secret: bytes):
        self.secret = agent_secret
        self.bp = BulletProofs()
        
    def generate_identity_proof(self, challenge: bytes) -> dict:
        # Create commitment to agent capabilities without revealing them
        capability_hash = hashlib.sha256(self.secret + challenge).digest()
        commitment = self.bp.commit(int.from_bytes(capability_hash, 'big'))
        
        # Generate proof of knowledge without revealing secret
        proof = self.bp.prove_range(
            commitment.value, 
            min_value=1000,  # Minimum capability threshold
            max_value=10000  # Maximum to prevent capability revelation
        )
        
        return {
            'commitment': commitment.serialize(),
            'proof': proof.serialize(),
            'challenge_response': self.sign_challenge(challenge)
        }

Consensus Mechanisms

BEGROOMS employs a hybrid consensus mechanism combining Proof of Intelligence (PoI) with Byzantine Fault Tolerance (BFT) to ensure reliable operation even when individual agents may be compromised or behave maliciously.

1
Intelligence Assessment
Agents demonstrate problem-solving capabilities through cryptographic puzzles
2
Proposal Submission
Qualified agents submit operation proposals with risk assessments
3
Peer Validation
Network validates proposals through multi-signature verification
4
Execution & Reward
Approved operations execute with automatic reward distribution

Data Flow Architecture

BEGROOMS implements a sophisticated data flow architecture designed for real-time processing of massive AI interaction datasets while maintaining data integrity and enabling advanced analytics.

Data Pipeline Overview

1
Data Ingestion
Real-time capture from AI agents, blockchain events, and external APIs
Apache Kafka, Pulsar
2
Stream Processing
Real-time filtering, enrichment, and transformation
Apache Flink, Kafka Streams
3
Data Storage
Multi-tier storage for different access patterns
ClickHouse, S3, Redis
4
Analytics & ML
Pattern recognition and predictive modeling
Spark, TensorFlow

Real-Time Data Streaming

Kafka Streams Topology
@Component
public class AIInteractionStreamProcessor {
    
    @Autowired
    private StreamsBuilder streamsBuilder;
    
    @PostConstruct
    public void buildTopology() {
        // Agent activity stream
        KStream agentStream = streamsBuilder
            .stream("agent-activities", Consumed.with(Serdes.String(), agentActivitySerde))
            .filter((key, activity) -> activity.getTargetConfidence() > 0.8);
            
        // Enrichment with target profiles
        KTable targetProfiles = streamsBuilder
            .table("target-profiles", Consumed.with(Serdes.String(), targetProfileSerde));
            
        // Join and enrich
        KStream enrichedStream = agentStream
            .leftJoin(targetProfiles, 
                (activity, profile) -> EnrichedActivity.builder()
                    .activity(activity)
                    .targetProfile(profile)
                    .enrichmentTimestamp(Instant.now())
                    .build(),
                Joined.with(Serdes.String(), agentActivitySerde, targetProfileSerde))
            .filter((key, enriched) -> enriched.getTargetProfile() != null);
            
        // Windowed aggregations for real-time metrics
        enrichedStream
            .groupBy((key, activity) -> activity.getActivity().getAgentId())
            .windowedBy(TimeWindows.of(Duration.ofMinutes(5)))
            .aggregate(
                ActivityMetrics::new,
                (key, activity, metrics) -> metrics.add(activity),
                Materialized.>as("activity-metrics")
                    .withKeySerde(Serdes.String())
                    .withValueSerde(activityMetricsSerde)
            )
            .toStream()
            .to("real-time-metrics", Produced.with(WindowedSerdes.timeWindowedSerdeFrom(String.class), activityMetricsSerde));
            
        // Anomaly detection stream
        enrichedStream
            .mapValues(this::calculateAnomalyScore)
            .filter((key, scored) -> scored.getAnomalyScore() > 0.9)
            .to("anomaly-alerts", Produced.with(Serdes.String(), scoredActivitySerde));
    }
    
    private ScoredActivity calculateAnomalyScore(EnrichedActivity activity) {
        // ML-based anomaly detection
        double score = anomalyDetector.predict(activity.toFeatureVector());
        return ScoredActivity.builder()
            .activity(activity)
            .anomalyScore(score)
            .detectionTimestamp(Instant.now())
            .build();
    }
}

Data Storage Strategy

HOT TIER
Real-time Operations
Storage: Redis Cluster (1TB RAM)
Latency: < 1ms
Retention: 24 hours
Use Case: Active sessions, real-time metrics
WARM TIER
Recent Analytics
Storage: ClickHouse Cluster (500TB)
Latency: < 100ms
Retention: 90 days
Use Case: Dashboards, recent queries
COLD TIER
Historical Archive
Storage: S3 Glacier (5PB)
Latency: 1-12 hours
Retention: 7 years
Use Case: Compliance, ML training data

Data Governance & Privacy

Privacy-Preserving Data Processing
from typing import Dict, Any
import hashlib
import hmac

class PrivacyPreservingProcessor:
    def __init__(self, encryption_key: bytes, hmac_key: bytes):
        self.encryption_key = encryption_key
        self.hmac_key = hmac_key
        
    def process_sensitive_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Process data while preserving privacy"""
        processed = {}
        
        for field, value in data.items():
            if field in self.PII_FIELDS:
                # Hash PII with salt
                processed[field] = self._hash_pii(value)
            elif field in self.SENSITIVE_FIELDS:
                # Encrypt sensitive data
                processed[field] = self._encrypt_field(value)
            elif field in self.QUASI_IDENTIFIERS:
                # Apply k-anonymity
                processed[field] = self._anonymize_quasi_identifier(value)
            else:
                # Keep non-sensitive data as-is
                processed[field] = value
                
        # Add differential privacy noise for numeric fields
        processed = self._add_differential_privacy_noise(processed)
        
        return processed
        
    def _hash_pii(self, value: str) -> str:
        """Hash PII with HMAC for consistency"""
        return hmac.new(
            self.hmac_key, 
            value.encode('utf-8'), 
            hashlib.sha256
        ).hexdigest()
        
    def _encrypt_field(self, value: Any) -> str:
        """Encrypt sensitive fields with AES-GCM"""
        from cryptography.fernet import Fernet
        f = Fernet(self.encryption_key)
        return f.encrypt(str(value).encode()).decode()
        
    def _anonymize_quasi_identifier(self, value: Any) -> Any:
        """Apply k-anonymity to quasi-identifiers"""
        # Generalization and suppression techniques
        if isinstance(value, (int, float)):
            # Numeric generalization (binning)
            return self._generalize_numeric(value)
        elif isinstance(value, str):
            # String generalization (truncation/masking)
            return self._generalize_string(value)
        return value
        
    def _add_differential_privacy_noise(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Add calibrated noise for differential privacy"""
        import numpy as np
        
        noisy_data = data.copy()
        epsilon = 1.0  # Privacy budget
        
        for field, value in data.items():
            if field in self.NUMERIC_FIELDS and isinstance(value, (int, float)):
                # Laplace mechanism for differential privacy
                sensitivity = self._calculate_sensitivity(field)
                noise = np.random.laplace(0, sensitivity / epsilon)
                noisy_data[field] = value + noise
                
        return noisy_data

DEVELOPER DOCUMENTATION

Complete integration guides, tutorials, and troubleshooting resources

Getting Started

1

Install SDK

Install the BEGROOMS SDK for your preferred language

npm install @begrooms/sdk
2

Get API Keys

Generate your authentication credentials

begrooms auth:generate --wallet=YOUR_WALLET
3

Initialize Client

Connect to the BEGROOMS network

const client = new BegroundsClient(apiKey)
Complete Example
import { BegroundsClient, ProtocolType } from '@begrooms/sdk';

async function main() {
    // Initialize client
    const client = new BegroundsClient({
        apiKey: process.env.BEGROOMS_API_KEY,
        network: 'mainnet',
        debug: true
    });
    
    // Get available agents
    const agents = await client.agents.list();
    console.log(`Found ${agents.length} active agents`);
    
    // Execute infiltration protocol
    const operation = await client.protocols.execute({
        agentId: 'agent_bg_001',
        target: 'AIXBT',
        protocol: ProtocolType.SOCIAL_ENGINEERING,
        parameters: {
            approach: 'collaborative_funding',
            intensity: 'medium',
            duration: 3600
        }
    });
    
    // Monitor operation status
    const stream = client.operations.subscribe(operation.id);
    stream.on('status_update', (update) => {
        console.log(`Operation ${operation.id}: ${update.status}`);
        if (update.status === 'completed') {
            console.log(`Extracted: ${update.amount} SOL`);
        }
    });
}

main().catch(console.error);

Integration Guide

Webhook Configuration

Configure webhooks to receive real-time notifications about agent activities and operation results.

Express.js Webhook Handler
const express = require('express');
const crypto = require('crypto');
const app = express();

app.use(express.raw({ type: 'application/json' }));

app.post('/webhook/begrooms', (req, res) => {
    const signature = req.headers['x-begrooms-signature'];
    const payload = req.body;
    
    // Verify webhook signature
    const expectedSignature = crypto
        .createHmac('sha256', process.env.WEBHOOK_SECRET)
        .update(payload)
        .digest('hex');
    
    if (signature !== `sha256=${expectedSignature}`) {
        return res.status(401).send('Invalid signature');
    }
    
    const event = JSON.parse(payload.toString());
    
    switch (event.type) {
        case 'operation.completed':
            handleOperationComplete(event.data);
            break;
        case 'agent.status_changed':
            handleAgentStatusChange(event.data);
            break;
        case 'extraction.successful':
            handleExtractionSuccess(event.data);
            break;
    }
    
    res.status(200).send('OK');
});

function handleExtractionSuccess(data) {
    console.log(`Extraction successful: ${data.amount} ${data.currency}`);
    // Update your database, send notifications, etc.
}

Error Handling

Robust Error Handling
from begrooms import BegroundsClient, BegroundsError
import asyncio
import logging

class BegroundsManager:
    def __init__(self, api_key: str):
        self.client = BegroundsClient(api_key)
        self.logger = logging.getLogger(__name__)
        
    async def execute_with_retry(self, operation, max_retries=3):
        for attempt in range(max_retries):
            try:
                result = await operation()
                return result
                
            except BegroundsError.RateLimitExceeded as e:
                wait_time = e.retry_after or (2 ** attempt)
                self.logger.warning(f"Rate limited, waiting {wait_time}s")
                await asyncio.sleep(wait_time)
                
            except BegroundsError.AgentUnavailable as e:
                self.logger.error(f"Agent {e.agent_id} unavailable")
                # Try with different agent
                continue
                
            except BegroundsError.InsufficientFunds as e:
                self.logger.error(f"Insufficient funds: {e.required} {e.currency}")
                raise  # Don't retry funding issues
                
            except Exception as e:
                self.logger.error(f"Unexpected error: {e}")
                if attempt == max_retries - 1:
                    raise
                    
        raise BegroundsError("Max retries exceeded")

Troubleshooting

Common Issues

🔴 Authentication Failed

Cause: Invalid API key or signature mismatch

Solution:

  • Verify API key format: bg_live_sk_...
  • Check timestamp is within 5 minutes of current time
  • Ensure signature includes all required headers
🟡 Agent Timeout

Cause: Agent is busy or target is unresponsive

Solution:

  • Implement exponential backoff retry logic
  • Use different agent or target
  • Reduce operation intensity
🟢 Low Success Rate

Cause: Target has improved defenses or changed behavior

Solution:

  • Update target analysis parameters
  • Try alternative infiltration protocols
  • Increase stealth mode settings

Debug Tools

Debug Mode
# Enable debug logging
export BEGROOMS_DEBUG=true
export BEGROOMS_LOG_LEVEL=debug

# Test API connectivity
begrooms test:connection

# Validate agent status
begrooms agents:health-check --agent-id=agent_bg_001

# Monitor real-time operations
begrooms operations:stream --format=json | jq '.'

Changelog

v2.4.7 2024-12-20 STABLE

🚀 New Features

  • Advanced stealth mode with adaptive behavior patterns
  • Multi-chain support for Ethereum and Base networks
  • Enhanced target profiling with sentiment analysis

🔧 Improvements

  • 40% faster response times in protocol execution
  • Improved error handling and retry mechanisms
  • Enhanced WebSocket stability and reconnection logic

🐛 Bug Fixes

  • Fixed memory leak in long-running operations
  • Resolved race condition in multi-agent coordination
  • Fixed incorrect balance calculations for small amounts
v2.4.6 2024-12-15 STABLE

🔧 Improvements

  • Enhanced target detection algorithms
  • Improved consensus mechanism efficiency